
TBX Handbook v1.7  
© Spencer 2015   

 
History  
 
In 1968 Honeywell decided to produce a 12 bit computer the H-112 which was 
meant for industrial installations and so was actually called the H-112 Controller 
rather than computer, though in fact it was very similar to the DDP-516 and 
H-316, 16 bit computers manufactured by Honeywell with a slightly reduced 
instruction set and only 12 bits per word rather than 16. 
 
The H-112 wasn’t very successful and in the early 1970’s I obtained one of 
these computers which was being scrapped. 
 
The H-112 had a maximum memory of 8KW and a basic teletype interface 
which I modified to work with a 5 unit Baudot code Creed 7ERP telex machine. 
Later I upgraded my home system with a Digital Group 32 x 12 line Video 
Display and Ascii Keyboard and my own designed interface. At the beginning 
Programs and Data were saved onto 5 unit Paper Tape and later onto cassettes. 
 
Like most computers you could program it in an Assembly language and it had a 
program called CAP12 which was the H-112 assembler or a program SAP12 
which ran on a series 16 machine to assembler for the H-112. 
 
But there were no high level languages like Fortran, Basic or Cobol. In 1974 the 
first micro computers were appearing but expensive and with very small 
memories so a magazine called Dr. Dobbs Journal began pushing the idea of a 
‘Tiny Basic’ that is an ‘Integer’ only Basic for these small machines and I 
thought why not make a somewhat Extended version for my H-112 and the 
result was TBX ‘Tiny Basic Extended’ a high level language interpreter 
for the H-112. Which was announced in an issue of Dr Dobbs Journal in 1974. 
 
For any questions or comments I can be contacted via my E-Mail address 
h112@spencerweb.net 
And photos of the machine can be seen at :- 
www.spencerweb.net/Ian_and_Julie/Hobbies/Chips_-_Early_years/chips_-_early_years.html 
 
 



 
 
 
 
TBX Structure  
 
The main TBX Editor and Interpreter resides in the bottom 4K of the computer 
and the TBX program and Array’s reside in the top 4K. After loading the TBX 
interpreter is started by doing a ‘Master Clear’ then setting ‘RUN’ and pressing 
the ‘START’ button. After initialising the following message appears :- 
 
Tiny Basic Extended Revision BH 
. 
 
The ‘.’ Indicates that the TBX editor is ready to receive input. 
 
 
TBX Statements 
TBX Statements always have the form :- 
 
Line number      Instruction    Parameters 
Ex.     10 LT A=6 
 
Multiple statements/Line are permitted :- 
Ex.     10 LT A=6 : GT 300 
Separated  by a ‘:’  
 
Pressing any key while a program is running will cause a BREAK  unless Break 
has been turned off. 
 
TBX Variables 
The language allows single letter variables A to Z but with or without an index 0 
to 9. So in effect there are 260 variables. So all of the following are valid 
variables. 
 
A    L    A5   B3  etc.  
 
Each variable can hold a value between –2048 and +2047  (12 bits) 
 
 
 
 
 
 



 
Random Number 
!  provides a random number between 0 and 999, Example :- 
 
10 LT A=!/100 
 
produces a random value for ‘A’ between 0 and 9 
 
Array’s  
The area of memory above the TBX program can be used as an Array either for 
numeric and/or text data and is represented by the designator ‘@’ for numeric 
values and ‘& ’ for text characters. 
 
Numeric Array  
So for example @0 or @220 could contain a value which could be used just like 
the normal variables A to Z. 
 
10 LT @10=230 
 
Text Array  
Or you can use parts of this area for ‘Text’ for example with &0 set to a word 
like ‘TEST’, actually when used for text each array variable contains 2 
characters so in &0 there is ‘TE’ in &1 there is ‘ST’ and in &2 an ‘End of text 
marker’ which is a carriage return ( 6 bits/character using Min6b format). So 
you can allocate any number of array locations to contain your text. 
 
10 LT &0=”TEST”       (Set &0,&1,&2 to TEST plus C/R) 
10 IN &0     (Input Text to &0,&1 etc.) 
 
If for example your messages could each be up to 15 characters then you could 
allocate &0 to &7 for the first message &8 to &15 for the second and so on. 
Printing &0 would print out the complete first message, printing &8 would print 
out the complete second message etc. 
 



 
Mathematics 
TBX handles 4 basic mathematical operators +  -  *  / 
And always executes them left to right, so :- 
 
10 LT A=6+4*10 
 
is 100 not for example 46   
 
Commands 
 
When a ’.’ is shown on the screen you can enter Commands or TBX 
instructions. The commands are as follows :- 
 
NEW   
Clear the Program and Data areas 
 
CLEAR 
Clear only the Data area 
 
MAP   
Display the length of the TBX program and the space available for Array’s 
 
LIST x,y   
List the TBX program onto the screen or LIST x,y  lists the lines between Line x 
and Line y 
 
RUN x 
Run the TBX program from the first line or RUN x  run the program from 
Line x. RUN clears all of the Data variables 
 
CONTINUE x 
Continue without a line number continues running the program from the break 
point with  a Line number it’s like RUN without clearing the Data variables 
 
LOAD 
Load a TBX program from the cassette mounted in the cassette drive 
 
SAVE 
Save a TBX program to the cassette mounted in the cassette drive 
 



 
 
Instructions 
 
LT 
This is the let statement so all of the following are valid statements :- 
10 LT A=6 
10 LT @20=200 
10 LT &50=”TEST” 
10 LT A5=B*C2+D 
19 LT SQ=26  (The contents of Q are an index for S so S0 to S9) 
 
IN x 
This is the Input statement all of the following are valid statements :- 
10 IN A 
10 IN B9 
10 IN @30 
10 IN &50 
 
PR 
This is the PRINT statement a print statement may be terminated in a number of 
ways :-  
 
10 PR “TEST” (Causes a New Line after the PRINT finishes) 
10 PR “TEST”.  (Leaves the cursor on the next character position) 
10 PR “TEST”;  (Leaves one space after the PRINT finishes) 
10 PR “TEST”,  (Tabs to the next tab after the PRINT finishes) 
 
All of the following PRINT statements are valid :- 
10 PR 
10 PR “TEST” 
10 PR z9 
10 PR @30 
10 PR &20 
 
When in DG Display mode (see the DM  Command) then the following are also 
supported :- 
 
10 PR $C.  (Clears the screen, Cursor placed at 0,0) 
10 PR $5,10. (Places the cursor on 6th line the 11th character) 
 
 
 
 



 
 
GT x 
This is the GOTO statement all of the following are valid :- 
10 GT 100 
10 GT A7 
10 GT @25 
10 GT A+B 
 
GS x 
This is the GOSUB statement it has the same parameters as the GoTo and the subroutine must 
be terminated with a Return statement 
 
RT 
Return from a Subroutine 
 
IF x : y 
This is the IF compare statement and if the statement is true then all of the following 
statements on the line will be executed. 
Operators are  
 =  Equals 
 # Not equal 
>Greater than 
< Less than 
 
 So all of the following are valid statements :- 
 
10 IF A = B : GT 400 
10 IF C7 # D : GS 700 
10 IF SQ < @50 : GT 300 
10 IF @15 > A5 : LT A=B*6 : GT 600 
 
Random numbers and Mathematics are not allowed in an IF statement. 
 
FR w=x,y,z 
This is the FOR statement and has the parameters starting value then end value and step value. 
The FOR loop must be terminated with a Next statement 
All of the following are valid :- 
10 FR A=1,5,1 
10 FR A=0,50,10 
10 FR A3=B,C9,D6 
10 FR A7=@20,60,D7 
 
NX w 
The Next statement at the end of a FOR/Next loop. 
 
ON x,y,z 
The ON statement if x=1 then Line y is executed if x=2 then Line z etc. 
10 ON A,100,200,300,500 



 
 
SL x 
This is the sleep statement and is number of 1/10th of a second to sleep, so for example :- 
10 SL 20    (Sleeps for 2 seconds but the exact time depends on the speed of your PC) 
 
ST 
The program should always terminate with a STOP statement, failure to do this results in an 
ERROR 3 Message. 
 
RM 
A remarks line which is ignored by the program, if it contains space characters then it must be 
enclosed in quotes. 
10 RM “THIS IS A REMARK” 
10 RM THIS-IS-A-REMARK 
 
BN x 
Turns on the BREAK function.  
A break is caused by entering any key on the keyboard while the program is running. 
if x = 0 then interrupt the program and return to the command processor when a break occurs, 
this is the standard condition when a program starts running. 
If x<>0  then it is the line number jumped to when a break occurs. 
10 BN 2000 
 
BF 
Turns off the BREAK function so that the program cannot be interrupted 
 
BK 
Force a jump to the break routine 
 
RB 
This is RETURN FROM BREAK and should be the last statement of a Break routine. 
Execution continues from the next statement after the break. 
 
 
AS x 
Execute an Assembler routine starting at location x (decimal). This address is 
always in the top 4K and should be above any TBX program or Array data. 
The assembler code must be in the form of a subroutine with the first location 
empty for the return address and the routine must end with a jmp* (indirect) 
through this location. 
 
TM  
Put the Emulation in Teletype mode. After a program terminates the emulator 
automatically returns to Teletype mode. 
 
DM 
Put the Emulation into DG Video Display mode (20 lines x 64 characters) 
After a program terminates the emulator automatically returns to Teletype mode. 



 
 
 
 
 
*** The following commands are not implemented in this version of TBX 
for the Emulator *** . 
 
CH  Chain program as only one program/memory area is stored on each  
cassette. 
 
 
TS   Test sense as this was used to test sense lines on my homebrew interface 
 
RD/WR Read or Write data to/from cassette  (These commands may be 
implemented later) 
 
 
ERROR MESSAGES 
 
.0001 Invalid Command 
.0002 Invalid Instruction 
.0003 Invalid Line Number 
.0004 Invalid Command Parameter 
.0005 Missing Character Position 
.0006 Invalid $ Command 
.0007 Invalid Variable Identifier 
.0008 Non-Numeric I/P to a Numeric Variable 
.0009 Variable Index Out of Range 
.0010 Invalid Mathematical Operator 
.0011 Missing “ Terminator 
.0012 Invalid IF Operator 
.0013 Divide by Zero 
.0014 Subroutine Stack Overflow 
.0015 Return Before Gosub 
.0016 Invalid Separator 
.0017 FR/NX Stack Overflow 
.0018 NX Before FR 
.0019 Write Failure 
.0020 Write Protect Error 
.0021 Read Error 
.0022 Non-Existent Cassette or Invalid content Error 
 


